Preference Learning

Johannes Fürnkranz (TU Darmstadt, Germany) and Eyke Hüllermeier (Universität Marburg, Germany)

Friday, September 24, morning

The topic of "preferences" has recently attracted considerable attention in artificial intelligence in general and machine learning in particular, where the topic of preference learning has emerged as a new, interdisciplinary research field with close connections to related areas such as operations research, social choice and decision theory. Roughly speaking, preference learning is about methods for learning preference models from explicit or implicit preference information, typically used for predicting the preferences of an individual or a group of individuals. Approaches relevant to this area range from learning special types of preference models, such as lexicographic orders, over "learning to rank" for information retrieval to collaborative filtering techniques for recommender systems. The primary goal of this tutorial is to survey the field of preference learning in its current stage of development. The presentation will focus on a systematic overview of different types of preference learning problems, methods and algorithms to tackle these problems, and metrics for evaluating the performance of preference models induced from data.

View website & slides

Made with goita - OpenSource CMS